

EASTERN INSTRUMENTS

Material Test Report

Kitty Litter

Date Tested:	June 10, 2005	Temperature:	Ambient (78°F/25.6°C)	
Technician:	Scott Tupper	Particle Size:	Dust to 1/4"	
Test Location:	Eastern Instruments	Flowability:	Average	
CFM Model:	12" Type I CentriFlow [®]	Cohesiveness:	None	
Meter Capacity:	15 ft³/min	Density (lb/ft³):	69 lbs/ft³	
Feed System:	Belt Conveyor	Inhibit Setting:	0.200 Volts	

Picture Not Available

Test #1	Mass Flow Rate = 8,000 lbs/hr		Percent of Volumetric Capacity = 53%			
Run #	Actual Weight	Metered Weight	Actual/Metered	Delta Weight	% Error	
1	26.42	26.40	1.001	-0.02	-0.08%	
2	26.44	26.38	1.002	-0.06	-0.23%	
3	26.42	26.38	1.002	-0.04	-0.15%	
4	25.24	25.20	1.002	-0.04	-0.16%	
5	25.24	25.19	1.002	-0.05	-0.20%	
Average:			1.002			
		STD:	0.00057			
		% STD:	0.06%			
Additional Comments: Tested with a 6" CentriFlow® Type I Meter equipped with Vibraw eigh®. All flow surfaces are Polished SS.						

Accuracy Statement:

"The CentriFlow® Meter will provide accuracy to within ±0.25% of reading when operating within ± 10% of the calibrated flow rate, as long as the flow rate is within the operational range of the meter."